Hierarchical linear modeling of longitudinal pedigree data for genetic association analysis
نویسندگان
چکیده
Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees, which could affect statistical assessment of the genetic effects. Approaches have been proposed to integrate kinship correlation into the mixed-effect models to explicitly model the genetic relationship. These have proved to be an efficient way of dealing with sample clustering in pedigree data. Although current algorithms implemented in popular statistical packages are useful for adjusting relatedness in the mixed modeling of genetic effects on the mean level of a phenotype, they are not sufficiently straightforward to handle the kinship correlation on the time-dependent trajectories of a phenotype. We introduce a 2-level hierarchical linear model to separately assess the genetic associations with the mean level and the rate of change of a phenotype, integrating kinship correlation in the analysis. We apply our method to the Genetic Analysis Workshop 18 genome-wide association studies data on chromosome 3 to estimate the genetic effects on systolic blood pressure measured over time in large pedigrees. Our method identifies genetic variants associated with blood pressure with estimated inflation factors of 0.99, suggesting that our modeling of random effects efficiently handles the genetic relatedness in pedigrees. Application to simulated data captures important variants specified in the simulation. Our results show that the method is useful for genetic association studies in related samples using longitudinal design.
منابع مشابه
Structural equation modeling with latent variables for longitudinal blood pressure traits using general pedigrees
Structural equation modeling (SEM) has been used in a wide range of applied sciences including genetic analysis. The recently developed R package, strum, implements a framework for SEM for general pedigree data. We explored different SEM techniques using strum to analyze the multivariate longitudinal data and to ultimately test the association of genotypes on blood pressure traits. The quantita...
متن کاملMarginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملModeling of multivariate longitudinal phenotypes in family genetic studies with Bayesian multiplicity adjustment
Genetic studies often collect data on multiple traits. Most genetic association analyses, however, consider traits separately and ignore potential correlation among traits, partially because of difficulties in statistical modeling of multivariate outcomes. When multiple traits are measured in a pedigree longitudinally, additional challenges arise because in addition to correlation between trait...
متن کاملAssociation analysis of whole genome sequencing data accounting for longitudinal and family designs
Using the whole genome sequencing data and the simulated longitudinal phenotypes for 849 pedigree-based individuals from Genetic Analysis Workshop 18, we investigated various approaches to detecting the association of rare and common variants with blood pressure traits. We compared three strategies for longitudinal data: (a) using the baseline measurement only, (b) using the average from multip...
متن کاملComparing baseline and longitudinal measures in association studies
In recent years, longitudinal family-based studies have had success in identifying genetic variants that influence complex traits in genome-wide association studies. In this paper, we suggest that longitudinal analyses may contain valuable information that can enable identification of additional associations compared to baseline analyses. Using Genetic Analysis Workshop 18 data, consisting of w...
متن کامل